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Signed Words in the Congenitally Deaf Evoke Typical Late
Lexicosemantic Responses with No Early Visual Responses
in Left Superior Temporal Cortex
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Congenitally deaf individuals receive little or no auditory input, and when raised by deaf parents, they acquire sign as their native and
primary language. We asked two questions regarding how the deaf brain in humans adapts to sensory deprivation: (1) is meaning
extracted and integrated from signs using the same classical left hemisphere frontotemporal network used for speech in hearing indi-
viduals, and (2) in deafness, is superior temporal cortex encompassing primary and secondary auditory regions reorganized to receive
and process visual sensory information at short latencies? Using MEG constrained by individual cortical anatomy obtained with MRI, we
examined an early time window associated with sensory processing and a late time window associated with lexicosemantic integration.
We found that sign in deaf individuals and speech in hearing individuals activate a highly similar left frontotemporal network (including
superior temporal regions surrounding auditory cortex) during lexicosemantic processing, but only speech in hearing individuals
activates auditory regions during sensory processing. Thus, neural systems dedicated to processing high-level linguistic information are
used for processing language regardless of modality or hearing status, and we do not find evidence for rewiring of afferent connections
from visual systems to auditory cortex.

Introduction
Neuropsychological and neuroimaging studies generally show
that, when acquired as a native language from birth in congeni-
tally deaf individuals, sign language is processed in a primarily left
frontotemporal brain network, remarkably similar to the net-
work used by hearing subjects to understand spoken words (Pe-
titto et al., 2000; MacSweeney et al., 2008; Mayberry et al., 2011).
Similarly, the N400, an event-related component correlated with
lexicosemantic processing (Kutas and Federmeier, 2011), is sim-
ilar when evoked by signs in deaf individuals and spoken or writ-
ten words in hearing individuals (Kutas et al., 1987; Neville et al.,
1997; Capek et al., 2009). Language deficits in deafness are more
pronounced after lesions in the left hemisphere (Klima and Bel-
lugi, 1979; Poizner et al., 1987; Hickok et al., 1996). Finally, direct
cortical stimulation in left inferior frontal and posterior superior
temporal regions in a deaf signer disrupted sign language produc-

tion similar to speech disruptions in hearing individuals (Oje-
mann, 1983; Corina et al., 1999).

Left frontotemporal language areas include the cortex sur-
rounding primary auditory cortex (Price, 2010), which is func-
tionally deafferented in congenitally deaf individuals. In animal
models, it has been demonstrated that afferent connections from
the retina can be induced to connect with the medial geniculate
nucleus of the thalamus (Sur et al., 1988), resulting in maps of
visual space within primary auditory cortex (Roe et al., 1990;
Barnes and Finnerty, 2010). Likewise, in congenitally deaf hu-
mans, auditory regions have been shown to exhibit hemody-
namic and neurophysiological activation to low-level moving
visual stimuli, particularly in the right hemisphere (Finney et al.,
2001, 2003) and even to sign language narratives more than in
hearing controls (Lambertz et al., 2005). However, other studies
have not found such responses (Hickok et al., 1997) or have
found extensive interindividual variability (Bavelier and Neville,
2002).

If auditory cortex is actually rewired in deaf individuals to
receive visual input directly, then the similar activation patterns
evoked by signed words in deaf signers and spoken words in
hearing individuals would be a natural consequence of neural
plasticity: in both groups, low-level sensory processing in audi-
tory cortex should be projected to adjacent superior temporal
areas, and thence to the broader left frontotemporal language
network for lexicosemantic processing. Alternatively, activity in
the region surrounding auditory cortex to signed words in deaf
individuals and to spoken words in hearing individuals may re-
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flect higher-level semantic encoding rather than sensory analysis.
In this scenario, common activations in superior temporal cortex
occur only after distinct modality-specific sensory processing for
sign or speech. These alternatives can be dissociated based on the
timing of the activity in superior temporal regions, information
that is not available from hemodynamic measures, but can be
obtained using MEG. Here we show that this activity is semantic,
not sensory. Only speech in hearing individuals activates auditory
areas during early sensory processing. However, both speech in
hearing individuals and sign in deaf native signers activate similar
temporal and frontal regions in the classical language network
during later semantic processing stages.

Materials and Methods
Participants. Twelve healthy right-handed congenitally deaf native sign-
ers (6 female; age range, 17–36 years) with no history of neurological or
psychological impairment were recruited for participation (Table 1). All
had profound hearing loss from birth and acquired American Sign Lan-
guage (ASL) as their native language from their deaf parents. In addition,
eight hearing controls from an analogous task with spoken English were
included for comparison (5 female; age range, 21–29 years).

Procedures. Each deaf participant viewed single signs that were either
congruously or incongruously paired with a preceding picture (Fig. 1).
Stimuli were high-frequency concrete nouns in ASL presented as short
video clips (range, 340 –700 ms; mean, 515.3 ms). Since no frequency
norms exist for ASL, the stimuli were selected from ASL developmental
inventories (Schick, 1997; Anderson and Reilly, 2002) and picture nam-
ing data (Bates et al., 2003; Ferjan Ramirez et al., 2012). The signs were all
concrete nouns representing highly imageable objects, and were re-
viewed by a panel of six deaf and hearing fluent signers to ensure they
were accurately produced and highly familiar from an early age. Words
that are typically fingerspelled or are compound signs were excluded.
Each sign video began when all phonological parameters (handshape,
location, movement, and orientation) were in place, and ended when the
movement was completed. Each sign appeared in both the congruent and
incongruent conditions, and if a trial from one condition was rejected
due to artifacts in the MEG signal, the corresponding trial from the other
condition was also rejected to ensure that sensory processing across con-
gruent and incongruent trials was identical. Subjects were instructed to
press a button when the sign matched the preceding picture in meaning;
the response hand was counterbalanced across six blocks of 102 trials
each. The hearing participants performed the same task, except that in-
stead of viewing pictures and signs, subjects saw photos and then heard
single auditory English words through earphones and pressed a button
when they matched. The picture remained on the screen throughout the
duration of the auditory word. Word duration ranged from 304 to 637
ms, with a mean of 445 ms. To analyze the response to pictures, we
compared the deaf group to a different group of hearing participants who
saw the same white-on-black line drawings in a separate but similar task.

Neuroimaging. While subjects performed the task, we recorded MEG
from 204 planar gradiometer channels distributed over the scalp, at 1000
Hz with minimal filtering (0.1–200 Hz). Following the MEG session,
each subject’s structural MRI was acquired as a T1-weighted image.
Sources were estimated by coregistering MEG and MRI data and using a
linear minimum-norm approach, noise normalized to a prestimulus pe-
riod, according to previously published procedures (Dale et al., 2000;
Leonard et al., 2010; McDonald et al., 2010). Random-effects statistical
analysis on the dynamic statistical parametric maps was performed using
a cluster thresholding approach (Hagler et al., 2006; McDonald et al.,
2010). Table 2 shows surface Talairach coordinates for peak vertices in
the clusters. Two time windows were selected for analysis based on a
grand average of the activity to signs and speech across both groups of
participants. For the early (80 –120 ms) time window, a grand average of
all signed or spoken words was displayed on an average brain, and for the
later time window (300 –350 ms), a subtraction of congruous–incongru-
ous words was displayed on the average brain. Regions with significant
clusters (cluster threshold for signs 80 –120 ms � 208.58 mm 2, 300 –350
ms � 212.32 mm 2; cluster threshold for speech 80 –120 ms � 238.60

mm 2, 300 –350 ms � 206.63 mm 2) were selected for time course extrac-
tion (Fig. 2C,D, graphs).

Results
Behavioral responses
Both groups of participants performed the task with high accu-
racy and fast reaction times (Table 1). Deaf participants were
accurate on 94.3% of trials (SD � 3.93) and responded at 619.10
ms on average (SD � 97.5 ms). Hearing participants were accu-
rate on 98.25% of trials (SD � 3.01) and responded at 561.23 ms
on average (SD � 94.28 ms). The between-group reaction time
difference was not significant (t test; p � 0.1).

Anatomically constrained MEG: early time window
(80 –120 ms)
During early sensory processing (80–120 ms), we examined the
grand average of activity for all signed words in deaf participants and
all spoken words in hearing participants. Responses to signs were
significant in posterior occipital regions, including the occipital pole
(Fig. 2A). Responses to spoken words were strongest in bilateral
superior temporal cortex, including primary auditory areas on the
superior temporal plane (Fig. 2B). An auditory peak in superior
temporal channels that did not differentiate between congruent and
incongruent conditions was visible in individual hearing subjects,
but was not present in deaf subjects (Fig. 3). Thus, at early latencies,

Figure 1. Schematic diagram of task design. Each picture and sign appeared in both the
congruent and incongruent conditions. Trials were presented pseudorandomly so that repeti-
tion of a given stimulus did not occur with fewer than eight intervening trials. Incongruent pairs
were not related semantically or phonologically in ASL.

Table 1. Deaf and hearing participant information and task performance

Group Gender
Age
(years) Education (years)

Accuracy
(%)

Reaction time
(ms)

Deaf 6 female, 6 male 30 (6.37) 15.92 (2.87) 94.30 (3.93) 619.10 (97.5)
Hearing 5 female, 3 male 27 (2.87) 19.00 (2.45) 98.25 (3.01) 561.23 (94.3)

Values in parentheses are standard deviations.

Table 2. Talairach surface coordinates for selected ROIs shown in Figure 2

ROI name

Coordinates (x, y, z)

Left Right

Anterior insula �31, 13, 6 31, 16, 10
Planum temporal �35, �31, 22 36, �30, 17
Superior temporal sulcus �47, �35, 0 46, �20, �7
Temporal pole �25, �1, �24 35, 5, �30
Intraparietal sulcus �33, �47, 34 37, �42, 34
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neural responses are confined to modality-specific sensory regions
and do not differentiate between semantically congruent and incon-
gruent trials. Crucially, signs do not evoke activity in auditory cortex
at �100 ms in deaf native signers.

To determine whether auditory cortex activity differs between
deaf and hearing individuals in response to visual stimuli, we
compared the response to the pictures with that from a separate
group of hearing subjects who saw the same line drawings. While
both groups showed significant cluster-thresholded activity in
posterior occipital cortex at �100 ms (minor localization differ-
ences between groups may be due to differences in the task design
between the deaf group and this particular hearing group), nei-
ther group showed activity in auditory areas (Fig. 4).

Anatomically constrained MEG: late time window
(300 –350 ms)
In contrast to early latencies, very high overlap was observed
between the deaf and hearing groups during lexicosemantic pro-

cessing. In both groups, the subtraction of congruent from in-
congruent trials revealed semantically modulated activity in the
classical left hemisphere frontotemporal network around the a
priori time window at 300 –350 ms. Although words in both sign
(Fig. 2C) and speech (Fig. 2D) activated some modality-specific
areas [e.g., left intraparietal sulcus (IPS) for sign], most activity
occurred within a shared network including the left planum tem-
porale, superior temporal sulcus, temporal pole, and, to a lesser
extent, the homologous areas in the right hemisphere. Represen-
tative single-subject waveforms from individual sensors revealed
similar onset in the timing and location of the congruent versus
incongruent difference in left superior temporal areas surround-
ing auditory cortex (Fig. 3), as determined by a random effects
resampling statistic (Maris and Oostenveld, 2007).

Discussion
Sign languages possess the sublexical, word-level, syntactic, and
semantic characteristics typical of spoken language (Emmorey,

Figure 2. Superior temporal areas surrounding auditory cortex are active for both sign and speech during lexicosemantic processing, but only for speech during sensory processing. A, Grand average activity
to signs at �100 ms in deaf subjects is localized to occipital cortex in calcarine and superior occipital sulci. B, Grand average activity to speech at �100 ms in hearing subjects is localized to posterior temporal
cortex. C, Center, Grand average activity to incongruent– congruent signs at 300 –350 ms (black arrow) in deaf subjects. Surrounding graphs, Regional time courses for congruent and incongruent conditions in
five bilateral regions of interest from �100 to 600 ms (light blue arrow at 100 ms). D, Same as C for speech in hearing subjects. IPS, Intraparietal sulcus; PT, planum temporale; AI, anterior insula; STS, superior
temporal sulcus; TP, temporal pole; V1, primary visual. All mapped activity is cluster thresholded dynamic statistical parametric maps, significantly greater than prestimulus baseline at p � 0.05, corrected.

9702 • J. Neurosci., July 11, 2012 • 32(28):9700 –9705 Leonard, Ferjan Ramirez et al. • Semantic Processing in Deaf Signers



2002; Sandler and Lillo-Martin, 2006). When a deaf child is
reared by signing parents, the developmental trajectory of lin-
guistic knowledge (including specific syntactic structures) fol-
lows that of spoken language in hearing children (Anderson and
Reilly, 2002; Mayberry and Squires, 2006).

We examined two stages of signed and spoken word process-
ing in deaf and hearing participants. While the early sensory pro-
cessing stage (�100 ms) is confined to modality-specific visual
cortex for signs and auditory cortex for speech, both kinds of
language activate an overlapping network of left hemisphere
frontotemporal regions (including areas surrounding auditory
cortex) during lexicosemantic processing (�300 ms). The simi-
larity between sign and speech during the later time window
confirms the hypothesis that areas including anteroventral tem-
poral, superior temporal, superior planar, and inferior prefrontal
cortex are specialized for processing word meaning, regardless of
modality. In contrast, the early differences between modalities
provide evidence that visual afferents are not directed to auditory
cortex for initial sensory processing to a greater extent in deaf-
ness. Rather, early sensory processing of signed words takes place
in visual cortex.

The current study is among the first investigations of the spa-
tiotemporal dynamics of sign processing. The timing of the

activity in the present study reveals that speech in hearing partic-
ipants and sign in deaf participants activates the classical left fron-
totemporal language network between �200 – 400 ms, well
beyond short-latency sensory processes. These areas have been
shown to be involved in processing high-level semantic informa-
tion for both auditory and written words in normal individuals
with fMRI (Patterson et al., 2007; Binney et al., 2010; Price, 2010;
Binder et al., 2011), MEG (Marinkovic et al., 2003; Leonard et al.,
2011), and in direct intracranial recordings in patients with med-
ically intractable epilepsy (Chan et al., 2011), although there is
evidence for functional and modality-specific specialization
within anterior temporal subregions (Visser and Lambon Ralph,
2011). These same areas are deficient or damaged in patients with
semantic dementia (Binney et al., 2010; Lambon Ralph et al.,
2010; Mion et al., 2010). Lexicosemantic activity in anteroventral
temporal and superior temporal areas is observed in both lan-
guages for bilinguals (Leonard et al., 2010, 2011) and in 12- to
18-month-old infants (Travis et al., 2011), further demonstrating
their fundamental role in processing meaning. We found only
relatively minor differences in active loci, including greater activ-
ity in IPS in deaf signers, possibly related to an inherently greater
praxic and biological motion component to sign (Emmorey et al.,
2002; Pobric et al., 2010). Activity in this network in congenitally

Figure 3. Individual MEG sensors demonstrate the dissociation between early and late activity in auditory regions. A1, Head plot shows the location of a left superior temporal MEG channel
showing significant incongruent � congruent activity in a deaf native signer. A2, The left superior temporal MEG channel shows the congruent versus incongruent difference for signs. B1, Head plot
from a hearing participant. B2, The same channel shows a similar difference for speech in a single representative hearing participant. Both subjects begin to show a significant difference between
conditions at �240 ms. C, The same channel shows a sensory peak at �100 ms for hearing (purple), but not deaf (green), subjects. Gray regions indicate significance at p � 0.01.

Figure 4. Direct comparison of response to pictures between deaf (A) and hearing (B) subjects. Both groups show significant activity at �100 ms in occipital visual areas, and neither shows
activity in auditory cortex.

Leonard, Ferjan Ramirez et al. • Semantic Processing in Deaf Signers J. Neurosci., July 11, 2012 • 32(28):9700 –9705 • 9703



deaf native signers processing a visuogestural language provides
additional support for the hypothesis that this processing reflects
abstract, supramodal representations of word meaning regard-
less of the input modality.

Capitalizing on the high spatiotemporal resolution of MEG
constrained by individual cortical anatomy obtained by MRI, we
also examined whether activity observed in auditory regions in
congenitally deaf individuals (Finney et al., 2001, 2003; Lambertz
et al., 2005) is caused by rewiring of visual sensory information to
cortex that has been underutilized due to sensory deprivation for
the individual’s entire life. While previous MEG results indicated
that hemodynamic activation in these regions, particularly in the
right hemisphere, reflected early processing, the time window
that was examined extended to 400 ms after stimulus onset, well
beyond initial sensory processing for both visual and auditory
stimuli (Finney et al., 2003). Furthermore, other investigations
with single deaf subjects have failed to find evidence for the hy-
pothesized cross-modal plasticity in auditory areas (Hickok et al.,
1997; Nishimura et al., 1999). The present study investigated a
sensory-specific, short-latency time window and found that dur-
ing the first pass of sensory processing, auditory cortex is not
active in deaf participants, whether they are viewing signs or static
pictures. Rather, these areas show semantically modulated activ-
ity only well after first-pass sensory processing is thought to be
completed. Lexicosemantic activity in the left anteroventral tem-
poral lobe between �200 – 400 ms has been shown with laminar
multi-microelectrode recordings from different cortical layers to
reflect recurrent associative or second-pass processing (Halgren
et al., 2006). The latency of the responses in superior temporal
cortex in deaf signers indicates that they receive the output of a
long chain of visual processing, instead of participating in the
early encoding of sensory information (which is performed in
primary and secondary visual areas).

Cortical plasticity is a hallmark of early development (Bates
and Roe, 2001) and continues well into adulthood in the form of
learning-induced cortical and synaptic changes (Buonomano
and Merzenich, 1998). Experimental results with animals show-
ing cross-modal plasticity in the context of sensory deprivation
are intriguing and of great importance for understanding funda-
mental principles of neural organization (Sur et al., 1988; Roe et
al., 1990; Sur, 2004; Barnes and Finnerty, 2010). While there is
extensive and convincing evidence that auditory stimuli activate
visual areas in blind individuals (Sadato et al., 1996; Cohen et al.,
1997; Barnes and Finnerty, 2010), such clear evidence for a reor-
ganization of auditory cortex in deafness is lacking in both hu-
man (Bavelier and Neville, 2002; Kral, 2007) and animal (Kral et
al., 2003; Kral, 2007) studies. Factors such as the extent of hearing
loss and age of onset of deafness may impact cortical reorganiza-
tion and rewiring (Bavelier and Neville, 2002; Lambertz et al.,
2005), and there may be functional distinctions between A1 and
surrounding areas that do show plasticity, such as the anterior
auditory field in cats (Lomber et al., 2010; Meredith and Lomber,
2011; Meredith et al., 2011). Additionally, some neurons in au-
ditory regions may be involved in processing nonauditory infor-
mation (particularly in multimodal contexts); however, the
present results suggest that in humans who are born profoundly
deaf and are native signers, unimodal responses in primary sen-
sory and semantic systems remain intact.

Thus, in deaf signers who acquired sign language from birth
from their deaf parents, signs are processed in a brain network
that is strikingly similar to that for spoken words in hearing indi-
viduals. The timing of activity in the language network (including
superior temporal regions surrounding auditory cortex) reveals

that this is due to semantic encoding, rather than to a rerouting of
visual-sensory input. This provides evidence that left frontotem-
poral regions, including the superior temporal plane surround-
ing the auditory cortex, are specialized for encoding word
meaning regardless of input modality.
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